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ABSTRACT

This paper develops an equilibrium model of a subprime mortgage market. Our goal

is to offer a benchmark with which the recent subprime boom and bust can be com-

pared. The model is tractable and delivers plausible orders of magnitude for borrowing

capacities, as well as default and trading intensities. We offer simple explanations for

several phenomena in the subprime market, such as the prevalence of teaser rates and

the clustering of defaults. In our model, both nondiversifiable and diversifiable income

risks reduce debt capacities. Thus, debt capacities need not be higher when a larger

fraction of income risk is diversifiable.
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One of the main goals of the financial system is to make credit widely available to

potential borrowers. The rapid growth of the U.S. subprime mortgage market was

viewed as an important advance in this direction because banks provided credit to

a group of individuals that previously were not considered creditworthy. Subprime

lending practices came under close scrutiny, however, after a surge in delinquencies

sparked a severe financial crisis.1 The general belief is that banks supplied more credit

than individuals could afford to repay. This leads to two important questions: what is

the borrowing capacity of the subprime population, and what are the resulting default

rates when borrowers exhaust this capacity? To investigate these questions, this paper

develops an equilibrium model of a subprime mortgage market.

Several features of our model are worth noting. Consistent with evidence from

the subprime population,2 we assume that households’ preferences and endowments

are such that in equilibrium, their demand for housing is constrained by the amount

that they can borrow from banks. Further, we assume that banks compete to offer

households the largest possible mortgages. The model incorporates two contracting

frictions, which affect mortgage size. First, households privately observe their income,

and thus banks cannot verify households’ reports, which is considered a characteristic

of subprime borrowers. Second, households cannot commit to a contract and are free

to terminate it at any time. By including this assumption, we aim to capture the

fact that subprime borrowers have little to lose apart from their home when taking

on a mortgage. These two frictions force banks to commit to foreclosures in order to

incentivize households to repay their loans. This foreclosure process, however, is costly

and takes a fraction of the house market value. Households’ aggregate borrowing

capacity drives the aggregate demand for homes. At the same time, market-clearing

home prices affect aggregate borrowing capacity. Thus, household borrowing capacities

and home prices are jointly determined in equilibrium.

The model is analytically tractable and suggests plausible orders of magnitude for

loan-to-income ratios, as well as default and trading intensities. In addition, it offers

several qualitative and quantitative insights.

First, the degree of income comovement among households is an important determi-

nant of borrowing capacity. Both nondiversifiable and diversifiable income risks reduce

debt capacities, although through quite distinct channels. As a result, the degree of in-

come comovement among households has an ambiguous effect on borrowing capacities

and home prices.

When income is correlated across households, foreclosures are more likely to take

place when aggregate income is low. This implies that foreclosed homes can only be

resold at lower prices. This reduces the collateral value of homes and leads to lower
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borrowing capacities and home prices. This effect vanishes when income is uncorrelated

across households because foreclosure on a particular household is uncorrelated with

home prices.

However, while uncorrelated income across households implies that buyers are avail-

able to pay higher prices on foreclosed homes, it also implies that those households with

positive income shocks are now more likely to terminate their existing contracts and

take on a larger mortgage in order to move to a larger house. Thus, banks cannot

maintain a long-lived relationship with their most solvent borrowers, which results in

lower mortgage capacity. The same set of dynamics does not unfold when household in-

come is correlated because a household that experiences a positive income shock would

compete in mortgage and housing markets with other households that have similarly

high income realizations. This makes terminating a current mortgage less valuable to

the household and therefore less costly to its bank.

Second, while most of our results obtain under the assumption that banks use debt

contracts with constant repayments, we also consider debt contracts with nonconstant

repayments. We demonstrate that contracts with initial “teaser rates” that gradually

increase over time lead to higher household borrowing capacity for a wide range of

parameters. These types of contracts were very common in subprime mortgages and

are often linked to the roots of the crisis. Indeed, banks have been portrayed as

villains who misled naive households into taking too much debt using teaser rates.

Setting aside any normative issues, we show that these contracts maximize household

borrowing capacities. The intuition is quite simple: even though the income process

has no drift and there is no inflation risk in our model, conditioning on the household

continuing to make payments, its expected income increases over time. This lowers the

conditional probability of default, which in turn makes it optimal for banks to ask for

increasing payments over time.

Finally, we also solve for the dynamics of home prices along the path to the steady-

state after an initial exogenous loan supply shock, which can be, for example, an

exogenous shift in securitization practice. We find that defaults peak three to four

years after the initial loan supply shock and that banks offer riskier loans at the initial

date because they anticipate a home price correction, and thus prefer to foreclose

sooner rather than later. We show that anticipating a 15% home price decrease along

the transition path, banks initially grants loans that are 30% lower than in the steady-

state. Thus, loan size is very sensitive to expected future variations in home prices.

This paper brings together two strands of literature — the literature on the microe-

conomics of mortgages and the literature on endogenous incomplete markets. Mayer,

Piskorski, and Tchistyi (2008) and Piskorski and Tchistyi (2008) also study optimal
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mortgage design in the presence of ex post informational asymmetry. Our papers are

complementary. They solve for the optimal recursive contract between a lender and

a long-sighted borrower in an exogenous environment. We focus on the aggregate

implications of contracting frictions between many pairs of lenders and short-sighted

borrowers.

Stein (1995) and Ortalo-Magné and Rady (2006) study the impact of credit con-

straints on prices and trading volume in housing markets. Both papers assume exoge-

nous credit constraints, and write a detailed model of households’ decision-making un-

der such constraints. Unlike these contributions, we study only the highly constrained

subprime segment of the population, but we derive credit constraints as endogenous

consequences of primitive frictions.

A second body of work studies how inability to commit to a contract prevents

agents from optimally sharing risk.3 Closest to our approach, Krueger and Uhlig (2006)

introduce the idea that households’ outside options after terminating a contract are

competitively supplied by a financial sector, which is an important ingredient of our

model. We have a more applied focus than these papers, but share the broader goal

of characterizing the equilibrium interaction between individual contracting problems

and asset prices.

The paper is organized as follows. Section I. outlines the model. Section II. solves

for the steady-state in the particular case in which banks use standard debt contracts

with constant repayments. Section III. studies out-of-steady-state dynamics. Section

IV. discusses optimal contracts. Section V. studies the effect of aggregate income

shocks on this economy. Section VI. concludes. Technical proofs are relegated to the

Appendix.

I. Baseline Model

Time is continuous and is indexed by t ∈ [0,+∞). There is a single perishable

consumption good that serves as the numéraire. There is a unit mass of housing units.

There are two types of agents, a unit mass of households and several non-atomistic

banks.
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A. Households

Households derive utility from consumption ct and occupied housing units qt. Each

household ranks bundles (ct, qt)t≥0 according to the criterion

E

(
R

∫ +∞

0

e−Rtu (ct, qt) dt

)
,

where R > 0 and u is increasing, concave, and differentiable. Households can only

consume and occupy nonnegative quantities. We interpret ct as the fraction of con-

sumption that exceeds a minimum subsistence level, which we normalize to zero. Let

ψ denote the lower bound of the marginal preference for housing over consumption:

ψ = min
c≥0,q≥0

{
∂u

∂q
�
∂u

∂c

}
.

We restrict the analysis to the case in which the discount rate R and ψ are very large.4

We will show that in this case, binding borrowing constraints determine mortgage and

housing demand because households are always willing to trade current consumption

for more housing in equilibrium.

For each household j ∈ [0, 1], there exists a Poisson process (Nj,t)t≥0 with intensity

δ > 0 such that at each arrival time, household j vacates its current home, and re-enters

the housing market for unmodelled reasons. These events capture trades in the housing

market that are not primarily driven by the evolution of the real estate market, but

rather by occupational changes, changes in household size, etc.5 In the remainder of

the paper, we refer to these events as exogenous termination dates, or ET dates. Let

ℵj be the set of ET dates for household j ∈ [0, 1]. Each household j ∈ [0, 1] is endowed

with an income stream that consists of the subsistence level plus a disposable fraction

(Ij, t)t≥0 such that {
∀t ∈ ℵj, Ij,t = 1

dIj, t
Ij, t

= σdWj, t, for t /∈ ℵj
, (1)

where Wj,t is a standard Brownian motion and σ > 0. Thus, households’ income

follows a geometric Brownian motion, which is reset at each ET date to one — the

unconditional average income of all households in the economy. If income was not reset

at ET dates, the average income of the households that move for exogenous reasons at a

given date would still be equal to one because ET dates are independent of income risk.

Re-setting household income processes ensures that the cross-section of incomes has

a stationary distribution. The assumption that income reset dates and ET dates are

generated by the same Poisson process is made for analytical convenience. Re-setting
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income at other dates than the ET dates would complicate the analysis without adding

any insights. All stochastic processes
(

(Wj,t)t≥0 , (Nj,t)t≥0

)
are assumed to be pairwise

independent. Thus, there is no aggregate uncertainty in this baseline model.

B. Banks

Banks care only about consumption. They are infinitely lived and risk-neutral, and

they discount the future at the rate r > 0. Banks are not financially constrained: we

assume that their aggregate endowment is always larger than households’ aggregate

debt capacity. Our goal is to determine the potential mortgage capacity of subprime

borrowers in the presence of an efficient financial system, and thus we abstract from

banks’ financial constraints.

Banks own an eviction technology. At any date, a bank can terminate a relationship

with a household by evicting the household and sell its units in the market for vacant

homes. However, eviction comes at a cost equal to a fraction λ of the home market

value, where λ ∈ (0, 1]. This captures the value loss implied by foreclosures.

C. Market for Vacant Homes

Banks and households are home-price takers. Vacant housing units are perfectly

divisible. However, to modify its home size from q to q′ 6= q, a household needs to

move into q′ new units, which entails transaction costs: if a household moves at date

t, then for all s ∈ [t, t+ ∆t] its instantaneous utility is only

u (ct+s, χqt+s) ,

where ∆t > 0 is small and χ ∈ [0, 1). That is, only a fraction χ of its new housing

units enters its preferences. This captures all the costs associated with search in the

housing and mortgage markets, moving, home remodelling, etc. This temporary utility

loss vanishes after t + ∆t. In what follows, therefore, we refer to χ as the relocation

cost parameter, and to its transformation χ−1 − 1 as the relocation costs. These costs

imply that households move only at discrete dates.

D. Contracting Frictions

Banks enter into individual financing contracts with households. Two contracting

frictions affect mortgage size. First, households privately observe the realization of their

income paths and consume secretly. Thus, banks cannot verify households reports,
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which is considered a characteristic of subprime borrowers. Other than households’

income realizations, everything else in this economy is publicly observable.

Second, households cannot commit to a contract and are free to terminate it at any

time. By including this assumption, we aim to capture the fact that subprime borrowers

have little to lose apart from their home when taking on a mortgage. Extensions could

endow lenders with recourse possibilities, and study how it affects debt capacities.

Banks can fully commit to a contract with a household.

E. Equilibrium Concept

At each date, banks simultaneously post contract menus. If several banks make

identical competitive offers, they obtain equal market shares. We solve for a steady-

state in which there is no aggregate uncertainty. More precisely, a steady-state is

characterized by a contract menu, a price per housing unit, and a distribution of housing

units across households such that at each date three conditions are satisfied. First, a

bank cannot make a strictly positive profit by offering a different menu of contracts.

Second, the market for vacant housing units clears. Finally, each household has an

optimal housing and consumption allocation given its current contractual obligations

and income, the available contract menus, and the housing price.

We study this model as follows. First, in Section II., we restrict the space of

contracts offered by banks to debt contracts with constant repayment schedules. This

particular case is very tractable and allows us to obtain most of our results in closed

form. Section III. studies price and default dynamics along paths to the steady-state.

Section IV. discusses optimal contracts.

II. Steady-State With Fixed Repayment

Contracts

A. Equilibrium

Suppose for now that banks can offer only standard debt contracts with fixed re-

payment schedules. In this contract, each bank quotes two numbers, a loan-to-income

ratio L ≥ 0 and a repayment ratio κ ∈ [0, 1]. A household that makes an initial pay-

ment of i receives a loan equal to Li and is asked to repay κi per unit of time from

then on. If the household fails to make a payment, the bank commits to evict the

household, and the contract is terminated. The next lemma describes the behavior of

impatient and constrained households facing such contracts.
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LEMMA 1: If ψ and R are sufficiently large, then each household takes the largest

possible loan at the outset of a contract and invests the loan entirely in housing. The

household meets the repayment schedule until the first of the following three events oc-

curs. 1. An exogenous termination date is realized and the household terminates the

contract for exogenous reasons. 2. Household income falls below the repayment value

and the household is evicted. 3. Household income increases sufficiently and the house-

hold voluntarily moves out and buys a larger home. As ψ, R→∞, the income threshold

at which the household voluntarily moves out tends to χ−1It, where It is the household’s

income at the beginning of the contract.

Proof: See the Appendix.

Lemma 1 states that sufficiently impatient and liquidity-constrained households

demand the largest possible mortgage at the outset of a contract, and stay in their

home until they have to move for exogenous reasons, they get evicted because they

cannot repay their debt, or they choose to move to a larger house.

The remainder of this section characterizes the steady-state in the case in which

ψ and R are sufficiently large that Lemma 1 applies and households move voluntarily

when their income grows by χ−1. Let

α = −1

2
+

√
2(r + δ)

σ2
+

1

4
, ρ = 1− λ

(
1 +

δ

r

)
, ω =

√
2δ

σ2
+

1

4
.

The following proposition shows that we can analytically solve for the steady-state up

to the repayment ratio κ, which is the solution to an algebraic equation.

PROPOSITION 1: Suppose ψ and R are sufficiently large that households behave as

described in Lemma 1. If banks quote a repayment ratio κ ∈ [0, 1] , then the average

income of households that initiate a new contract at a given date is given by

I =
1− pκ − pχ

1− κpκ − pχ
χ

, (2)

where

pχ =

√
χ (κω − κ−ω)(

(κχ)ω − (κχ)−ω
) , (3)

pκ =
(χω − χ−ω)

√
κ
(
(κχ)ω − (κχ)−ω

) . (4)

Households arrive in the market with intensity δ/ (1− pκ − pχ) . This arrival intensity

is the sum of the arrival intensities of households that i) unwittingly default, ii) volun-
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tarily terminate their contract in order to relocate, and iii) move for exogenous reasons

at an ET date. These three intensities are respectively equal to δpκ/ (1− pκ − pχ),

δpχ/ (1− pκ − pχ) , and δ. Further, for a given repayment ratio κ, the loan-to-income

ratio L is

L = l (κ) =
κ

r
×

[
1− 1− ρ

κα+1(1−χα)+κ−α(χ−α−1−1)
(χ−α−1−χα) − ρ

]
. (5)

The equilibrium repayment ratio is arg max l(κ). The price of a housing unit P is equal

to LI.

Proof: A contract initiated by household j at date t is terminated at date t+ T j,t,

where

T j,t = min
(
T j,tδ , T j,tκ , T j,tχ

)
. (6)

The three stopping times T j,tδ , T j,tκ , and T j,tχ are defined as follows. First,

T j,tδ = minℵj ∩ (t,+∞)

is the time passed until the first ET date after the contract is initiated. Second,

T j,tκ = min {τ ≥ 0 : Ij, t+τ = κIj, t}

= min

{
τ ≥ 0 : W j

t+τ −W
j
t =

lnκ

σ
+
στ

2

}
is the time passed until the income of household j falls below the value κIj,t for the

first time after t. Finally,

T j,tχ = min {τ ≥ 0 : χIj, t+τ = Ij, t}

= min

{
τ ≥ 0 : W j

t+τ −W
j
t = − lnχ

σ
+
στ

2

}
is the time passed until the income of household j reaches the value χ−1Ij,t for the

first time after t. Equation (6) states that a contract is terminated for one of the

following reasons: i) an ET date occurs, ii) the household cannot meet a repayment,

iii) the household voluntarily terminates the contract and vacates its home to acquire

a larger one. Notice that the distributions of T j,tδ , T j,tκ , and T j,tχ do not depend on j, t.

Therefore, we omit the superscripts j, t for notational simplicity. Let

pχ = Prob (Tχ < Tκ;Tχ < Tδ) ,

pκ = Prob (Tκ < Tχ;Tκ < Tδ) .
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The proofs of (3) and (4) are in the Appendix.

We now compute I, the average income of households that initiate a new contract

at a given date. Consider a household in the market at date t with income Ij,t. The

household’s next arrival to the market will be because of an ET date, with an expected

income equal to one, because of an eviction, with an income of κIj,t, or because of

a decision to upgrade its home after its income reaches χ−1Ij,t. Averaging over all

households in the market gives

I = 1− pκ − pχ + pκκI + pχχ
−1I,

which yields (2).

Let Mdt denote the steady-state measure of households in the market between t

and t+ dt. A fraction 1− pκ − pχ of these households trade because of the realization

of an ET date. Since such dates occur with intensity δ,

(1− pκ − pχ)Mdt = δdt.

Therefore, the arrival intensity of households in the market M is δ/ (1− pκ − pχ) , and

the respective arrival intensities of households that default and voluntarily relocate are

δpκ/ (1− pκ − pχ) and δpχ/ (1− pκ − pχ) .

Let us finally compute L and P . Let S denote the quantity of vacant units per

household in the market. If household j purchases qj,t units at date t, then it must the

case that it receives a loan that satisfies

LIj,t = Et

(∫ T

0

e−rsκIj,tds+ P × qj,te−rT (1− λ1{Tκ<Tκ,Tκ<Tδ})
)
.

The first term on the right-hand side is the present value from future repayments, and

the second term is the present value from reselling the vacant home at the random date

at which the contract ends. Integrating over the households in the market at date t

yields

LI =
κI

r

(
1− Ee−rT

)
+ PS × E

[
e−rT

(
1− λ1{Tκ<Tκ,Tκ<Tδ}

)]
.

Market clearing implies PS = LI, so that

L =
κ

r
× 1− Ee−rT

1− Ee−rT + λE
(
e−rT1{Tκ<Tχ,Tκ<Tδ}

) . (7)

The computations of Ee−rT and E
(
e−rTκ1{Tκ<Tχ,Tκ<Tδ}

)
that lead to expression

(5) are relegated to the Appendix. The equilibrium repayment ratio is the one that
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maximizes the loan-to-income ratio.

Finally, we have S = 1. Default and relocation times are independent of household

home size. This implies that the sample of houses in the market at any point in time

is a random sample of the economy-wide distribution of housing sizes. In particular,

the quantity of housing per household in the market is equal to the quantity of housing

per household in the economy, that is, S = 1.�

Notice that as λ→ 0, the loan-to-income ratio L tends to the level 1/r that would

prevail without contracting frictions. Absent eviction costs, committing to eviction

upon default comes at no cost.

A.1. Borrowing Capacity and Housing Price

The primitive parameters of the model δ, r, χ, λ, and σ determine only the loan-to-

income ratio L and the average income in the market I. Our assumption of an inelastic

unit supply then yields the home price P = LI. Alternatively, if we set the home price

to an exogenous level P ∗ and let home supply adjust to the market-clearing level, then

L and I would not change, and the home supply would be LI/P ∗. Households’ steady-

state debt capacities depend only on how much a household invests in the housing

market. As long as the home price is constant, this amount does not depend on a

particular price level. This happens because households in our model are liquidity

constrained and therefore have inelastic demand for housing. Thus, aggregate demand

LI does not depend on the decomposition of supply into price and quantity.

A.2. Social Optimum

Ex ante efficient allocations would allow households to have constant home size

over time and to frontload their consumption by borrowing from banks. Contracting

frictions take the equilibrium away from this first-best. A full-fledged analysis of the

welfare implications of these contracting frictions would require that we specify the op-

portunity sets and preferences of those agents who set up banks and those who supply

housing. In this paper, we do not pursue this route but focus more simply on the de-

terminants and magnitudes of equilibrium borrowing capacities L and home prices P .

B. Orders of Magnitude

This section presents a simple calibration exercise in which we show that the model

generates empirically plausible orders of magnitude for the steady-state aggregate quan-

tities. We set the (real) rate r to 2%. We set the volatility of households’ income σ

to 25%, which is consistent with Dynan, Elmendorf, and Sichel (2008), who estimate
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the volatility of pre-tax total household income at 23% to 25% for the 2002 to 2004

period in the PSID data set.6 Based on a recent empirical study by Campbell, Giglio,

and Pathak (2011), we set foreclosure costs λ to 30%. This leaves two free parameters:

the arrival intensity of ET dates δ and the relocation cost parameter χ. As shown

in the Internet Appendix, the cross-section of household income in our model has a

double Pareto distribution that depends only on σ and δ.7 With σ = 25%, a maximum

likelihood estimation of δ using the PSID sample yields δ = 6.25%. The relocation

cost parameter χ affects households’ moving decision. We set χ to 0.625 to deliver an

effective mortgage duration of five years on average, which is plausible for the subprime

segment.

These parameter values yield a steady-state repayment ratio κ of 42%, an arrival

intensity of households to the market δ/ (1− pκ − pχ) of 20%, a default intensity of

6.6%, and an average income of households conditional on trading in the housing market

I of 1.1.

These estimates compare to their recent empirical counterparts as follows. Fabozzi

(2006) reports average front-end debt-to-income ratios of 40% for subprime borrowers,

and back-end ratios averaging above 50%.8 We predict a fairly similar steady-state

repayment ratio of 42%. In comparison, repayment ratios for the prime segment are

typically below 30%. The trading intensity of 20% corresponds to an effective mortgage

lifespan of five years, below the average effective duration of seven years over prime

mortgages.

Assessing the plausibility of our default intensity is less straightforward because

several definitions of mortgage default are used in practice. The broadest definition

is delinquency, where payment delays exceed 60 days, and the narrowest definition is

foreclosure. U.S. data yield annual delinquency rates on subprime mortgages varying

between 8% and 17% between 1998 and 2007, while annual subprime foreclosure rates

range from 2% to 9% over the same period.9 Annual delinquency and foreclosure rates

never exceed, respectively, 4% and 1.5% for prime mortgages over the same 10 years.

Our model, in which delinquency and foreclosure coincide, predicts a default intensity

of 6.6% that seems broadly in line with average subprime foreclosure rates observed

over the 1998 to 2007 period. We consider a theoretical steady-state while the data

corresponds to a subprime boom and bust. Thus, our default intensity of 6% to 7%

gives a sense of what one could expect from a stable subprime market.

Finally, our model yields predictions on the distribution of the incomes of house-

holds active in the market at a given date relative to the unconditional income distri-

bution. Predictions such as I = 1.1 are novel to our knowledge and could be tested in

principle.

11



C. Comparative Statics

Proposition 1 maps the five primitive parameters σ, δ, λ, r, and χ into a full char-

acterization of the steady-state. The comparative statics properties of the steady-state

with respect to χ are particularly instructive. Recall that we interpret χ−1 − 1 as re-

location costs for households in mortgage and housing markets. Arguably, these costs

have dramatically declined for subprime borrowers during the subprime boom. The

dramatic growth in the size of the subprime segment must have made matching between

homes, households, and subprime brokers much swifter. It is therefore interesting to

study the impact of an increase in χ on the equilibrium variables in our model. Figure

1 shows equilibrium values of loan-to-income and repayment ratios, price and default

rates as a function of χ.

[Figure 1 About Here]

From Figure 1 we can see that the equilibrium loan-to-income ratio decreases with

respect to χ. This can be explained as follows. If a household terminates the contract

and vacates its place to climb up the property ladder after a positive income shock,

it destroys value for the bank because the household has become more solvent than it

was when the loan was originated. The relocation costs χ−1 − 1 act as a commitment

device. The higher the χ, the smaller the relocation costs. Therefore, it is more likely

that a household decides to leave its current home and buy a larger one after a positive

income shock. Banks rationally anticipate this behavior and lower the initial loan size.

As the loan-to-income ratio decreases, so does the repayment ratio κ, which implies

a lower probability of default of a given loan.10 It would be tempting to conclude

that both home prices and defaults decrease when relocation costs are smaller and

their commitment role is thus reduced. Figure 1 shows that this is actually not the

case. Even though each loan taken individually is smaller and less risky, households

enter new contracts and thus maximize their debt capacity more often. As a result,

aggregate lending increases, and the cross-section of borrowers becomes riskier. Higher

aggregate lending leads, in turn, to higher equilibrium home prices. In other words,

a decrease in relocation costs has a negative effect on each particular lender–borrower

relationship because it makes the borrower’s commitment problem more severe. On the

other hand, reduced commitment power induces households to reveal and pay out their

positive income shocks more frequently. This positive effect on information production

is the dominant one on aggregate lending.

Overall, a decrease in relocation costs leads to a steady-state with higher aggregate

lending and higher default rates despite safer and smaller individual loans. In practice,

however, the change in defaults would occur only with a lag since it takes time for
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households to hit the default boundary of a fresh mortgage. Failure to correctly antic-

ipate this lagged change in defaults may have contributed to the mispricing of many

subprime-backed securities.

III. Transition Dynamics

The steady-state analysis gives a sense of what should prevail in a stable subprime

market. The rapid development of the subprime segment in the 2000s, however, is

better thought of as a transition from an initial situation with very limited subprime

borrowing to a new steady-state. In particular, many observers argue that changes in

the securitization market led to an unanticipated credit supply shock (see, for example,

Mian and Sufi (2009)). The goal of this section is to understand the out-of-steady-state

dynamics resulting from such a shock.

A positive credit supply shock has two features: an increase in aggregate lending,

and an increase in the number of new loans originated at a particular point in time. Our

approach here is to capture these features in the simplest possible out-of-steady-state

analysis.

Suppose that at the outset t = 0, all homes are vacant and no household is indebted.

Let It denote the average income of households that are in the market at date t, Pt

the date-t price of one housing unit, and St the date-t home supply in the market

per household in the market. We also denote the respective loan-to-income ratio and

repayment ratio that banks offer at date t as Lt and κt. At each date t, banks set Lt

and κt to maximize the loan size available to households at date t given a projected

price path Pt+s for s ≥ 0. For simplicity, we set χ = 0, so that loan termination occurs

only at default dates and ET dates. Our goal is to determine the evolution of aggregate

quantities along the path to the steady-date described in Proposition 1.

We start our computation assuming that at all dates t, banks give the steady-state

contract described in Proposition 1. For this contract, we compute arrival intensities

of households to the market, the average income path It, and the home price path

Pt. Then, given the home price path Pt, we recompute κt and Lt to ensure that banks

maximize the loan size at each date t. This leads to new arrival intensities of households

to the market, a new average income path It, and a new home price path Pt. We iterate

this procedure until convergence of all quantities. The Internet Appendix provides a

detailed discussion of the solution technique.

Figure 2, Panels (A) and (B) depict the evolutions of the home price and default
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intensity along the transition path.

[Figure 2 About Here]

In both graphs, the dashed line represents the path that would prevail if banks were

naively offering the steady-state contract (κ, L) described in Proposition 1 from date

0 on. The solid line corresponds to the situation in which banks optimize (κt, Lt)

at each date. In either case, there is a surge in default intensity three to four years

after the opening of the mortgage market. The foreclosure rate exceeds 8% at this

point before reverting back slowly to its steady-state level. Accordingly, home price

decreases. The intuition is simple. Average income in the market starts out at date 0

at a maximal level. Then the fraction of households that trade because of an eviction

increases because realized defaults on date-0 mortgages tend to cluster around the date

at which the density of default times reaches its maximum. This lowers average income

in the market and thus the price.

Figure 2 Panel (C) depicts the evolution of the repayment ratio κt. Notice first that

the variation of κt is quite small. Yet, banks tend to become more conservative over

time by setting decreasing repayment ratios. The intuition is that banks expect a sharp

negative rate of return on housing at date 0. Thus, they are more willing to raise the

first repayments, even if it triggers more early defaults. Postponing default with lower

repayments is unappealing because doing so comes at the cost of larger reductions in

housing prices once default occurs. Notice that these slightly higher out-of-steady-state

repayment ratios significantly increase maximal default intensity from 7.5% to almost

8.5%: The peak of default intensities is very sensitive to the repayment ratios.

It is interesting to compare these orders of magnitude with facts from the subprime

crisis. That the foreclosure rate exceeds 8% at its peak, which is reached about four

years after the beginning of the boom, seems broadly in line with the facts over the

2003 to 2007 period. Figure 2, Panel (D) shows the evolution of the loan-to-income

ratio Lt. We can see that anticipation of the 15% home price decrease in Panel (A)

leads to the 30% decrease in loan size. Thus, loan size is very sensitive to the expected

future variations in home prices. This is consistent with recent findings by Mian, Rao,

and Sufi (2012), who find a strong correlation between home price fluctuations and

household debt and debt-to-income over the 2002 to 2006 period, particularly in areas

populated by the most constrained borrowers.

Finally, we would like to highlight the role of the simplifying assumption χ = 0.

Setting χ to zero makes the steady-state average income of households in the market

be below the average income of households in the market at date 0. This implies that
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the amount spent on housing is higher at the time of the shock and then decreases

towards the steady-state. Higher values of χ can result in the steady-state average

income of households in the market being above the average income of households in

the market at date 0. We conjecture that this is likely to lead to an increase in home

prices. Solving for the transition path in this case, however, is a challenging numerical

problem that we leave for future research.

IV. Optimal Repayment Schedules

So far we have restricted the analysis to the tractable case in which banks use only

constant repayment schedules. This section discusses optimal repayment schedules.

By optimal, we mean schedules designed by banks so as to maximize the initial loan.

We first study optimal standard debt contracts. We deem a contract to be a standard

debt contract if it has the following design. First, the household promises to meet a

deterministic, possibly time-dependent, repayment schedule. Second, the household

gets evicted if it fails to meet a payment.

The contracts with fixed repayments considered so far fall into this category. In

general, however, a standard debt contract is characterized by its repayment schedule,

which is a function g of the time passed since origination. More precisely, if the

contract is originated at date t, then the t + s contractual repayment is e−g(s). We

have the following compact characterization of an optimal standard debt contract. For

simplicity, we focus again on the case where χ = 0.

PROPOSITION 2: Let

Tg = min

{
τ ≥ 0 : Wj, t+τ −Wj, t =

στ

2
− g(τ)

σ

}
,

and

Qg(τ) = Prob(Tg ≥ τ).

The optimal contract g solves

sup
g

∫∞
0
Qg(s)e

−g(s)−(r+δ)sds

λ+ ρr
∫∞
0
Qg(s)e−(r+δ)sds

. (8)

Proof: See the Appendix.�

Unfortunately, problem (8) does not seem to be analytically solvable. Solving it

numerically is also challenging.11 We take first steps in this direction by studying the

equilibrium when the contract space is expanded to contracts with repayments that
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are piecewise log-linear. Specifically, we consider a space of contracts such that

g(s) = a+ bs,

where constants a and b can take up to two different values on two intervals partitioning

[0,+∞). We derive analytical expressions for the loan-to-income ratio, average income,

and the default intensities given such a contract. Solving for the equilibrium contract

is then a standard low-dimensional numerical search for extrema. Figure 3, Panel (A)

compares optimal repayment schedules for the cases in which repayments are constant,

log-linear, and piecewise log-linear.

[Figure 3 About Here]

Consider first the piecewise log-linear contract. It consists of high initial repayments

that decrease rapidly followed by increasing repayments. It is interesting to notice that

repayment ratios become optimally larger than one in the long run even though the

income process has no drift and there is no inflation risk in our environment. These

repayment patterns are reminiscent of teaser rates after an initial downpayment.

The intuition behind such schedules is as follows. At the beginning of the contract,

banks perfectly observe borrowers’ income and thus optimally extract a high fraction

of it. As time elapses, two effects compete with each other. On the one hand, income

distribution at a given date becomes more volatile, which induces banks to lower re-

payments in order to mitigate default risk. On the other hand, households’ expected

income at remote dates conditional on still honoring repayments increases over time,

which calls for larger repayments. With a lognormal distribution, the dominant effect

is initially the former, and then the latter.

If the contract space is restricted to log-linear repayments, then the slope of the

optimal schedule depends on the expected length of the contract. For δ sufficiently

small, banks expect a long-lasting contract, and therefore ask for increasing repayments

in an effort to maximize the loan size. This case is depicted in Figure 3. Conversely,

optimal repayment schedules are decreasing for larger values of δ. In this case, banks

expect contracts to be short-lived and thus optimally focus on extracting high initial

repayments.

Figure 3, Panel (B) illustrates equilibrium loan-to-income ratios with these three

types of contracts as a function of δ. Overall, all three types of contracts deliver com-

parable loan-to-income ratios. For δ around 6%, loan-to-income ratios increase by less

than 1% when we extend the contract space to log-linear contracts, and less than 5%

by allowing for piecewise log-linear contracts. This suggests that the restriction to
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fixed-repayment contracts is not critical for our results. Figure 3, Panels (C) and (D)

show how steady-state default intensity and home prices vary with δ for the three types

of contracts. It can be seen that the impact of the contract space on aggregate debt ca-

pacity is rather limited for δ around 6% — the value that we set to fit the unconditional

income distribution. On the other hand, default intensity increases more significantly

when the contract space becomes richer. The broad intuition is that more flexibility in

contract design induces banks to seek higher future repayments from lucky borrowers

against the risk of higher remote defaults. With flat repayment schedules, eliciting

higher repayments comes at the cost of more early defaults that are very costly, and

that time-dependent schedules can reduce.

In general, banks can commit to contingent repayment schedules. That is, at each

date t after the outset of the contract, the bank can condition the eviction decision on

the entire history of income reports and repayments made by the household between

the beginning of the contract and t. We formally define such a general contingent

repayment schedule in the Internet Appendix.

In the limiting case in which households are completely myopic (R = +∞), such

contingent schedules do not improve upon standard debt contracts. We offer a formal

proof in the Internet Appendix. The intuition is simple. A myopic household, which

cannot afford a bigger home at a given date t, maximizes date-t utility simply by re-

paying as little as possible while avoiding eviction. Since households repay the minimal

amount that shields them from eviction at each date, no new information accrues to

the bank regarding the household’s income as history unfolds, except for the fact that

the household’s income is above this minimal repayment. Thus, there is no point in

revising the repayment schedule based on the contract history. The household’s in-

come distribution conditional on the public history between zero and t is identical to

the household’s income distribution viewed from date 0 conditional on the contract not

having been terminated before date t.

With a finite R, contingent repayment schedules could in principle improve upon

noncontingent ones. Piskorski and Tchistyi (20011) characterize such optimal schedules

in the case in which the borrower’s income realizations are i.i.d. In our setup in which,

consistent with the data, households’ income shocks are persistent, solving for such

optimal contracts is much more challenging. Fernandes and Phelan (2000) and Doepke

and Townsend (2001) offer numerical solutions to contracting problems with persistent

private information. Recent papers by Farhi and Werning (2011) and Williams (2011)

offer characterizations of optimal contracts under persistent private information using

first-order conditions. However, to the best of our knowledge, no closed-form solutions

exist in general.
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Finally, it is worth stressing that one obvious advantage of noncontingent contracts

is their robustness. All that the bank needs to know to design an optimal debt con-

tract is that borrowers are sufficiently constrained and impatient. In contrast, optimal

contingent contracts are usually sensitive to the exact formulation of households’ pref-

erences.

V. Systematic Income Risk

This section offers insights into the impact of aggregate income shocks on debt

capacities and home prices. The main goal is to show that diversifiable and nondiver-

sifiable income risks reduce equilibrium debt capacities through different channels in

this economy. As a result, the degree of income comovement among households can

have an ambiguous effect on borrowing capacities and home prices.

A. Equilibrium

Consider a modification of the baseline model in which the income process is iden-

tical across households. The common income process (It)t≥0 obeys

dIt
It

= σdWt,

where Wt is a standard Brownian motion. As before, we assume that for each household

j ∈ [0, 1], there exists a Poisson process (Nj,t)t≥0 with intensity δ > 0 such that at each

arrival time (ET date), household j vacates its current home and re-enters the housing

market for unmodelled reasons. Unlike in the baseline model, however, the income of

a household, to preserve its systematic nature, is not reset at ET dates.

When households are ex post identical, trades in the housing market follow only

two motives: the occurrence of an ET date and default. Absent cross-sectional het-

erogeneity, there is no other reason to enter the market since there is no possibility

to move along the property ladder. Note also that, absent any additional contract-

ing restrictions, such systematic income shocks would not cause default. Because the

mortgage market is active at all dates, banks would perfectly filter income shocks out

of the home price process, and thus could write contingent contracts. Households could

in fact borrow It/r against their entire future income because ET dates merely amount

to replacing a borrower with an identical one at no cost.

Since we are interested in the impact of aggregate shocks on debt capacity in the

presence of noncontingent contracts, we assume in this section that it is not possible to
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index contracts on aggregate risk. This is arguably realistic: mortgages may be indexed

to short-term (nominal) rates in practice, but usually do not depend on aggregate

variables such as a housing price index. As before we focus on the tractable debt

contracts with fixed repayment schedules studied in Section II.. The next proposition

characterizes the equilibrium in the presence of such contracts. Recall that

α = −1

2
+

√
2(r + δ)

σ2
+

1

4
, ρ = 1− λ

(
1 +

δ

r

)
.

PROPOSITION 3: There is a unique equilibrium with fixed-repayment contracts that

satisfies the transversality condition:

lim
s→+∞

Et
(
e−rsPt+s

)
= 0. (9)

In this equilibrium, the repayment associated with a contract initiated at date t is κ×It,
where the repayment ratio κ is the unique solution within [0, 1] of

(α + 1)κα = 1 + ρακα+1. (10)

The price of a home unit Pt is a linear function of aggregate income It,

Pt =
1− κα

1− ρκα+1
× κIt

r
=

α

α + 1
× κIt

r
, (11)

where κα
α+1
× 1

r
is also the loan-to-income ratio offered in the loan market.

Proof. See the Appendix.�

Equation (11) shows that when banks quote a repayment ratio κ, they discount

promised repayments κIt at a rate r+ ∆r, where the equilibrium spread ∆r is equal to
rκα(1−ρκ)

1−κα . The spread ∆r increases with respect to κ because default risk is increasing

in κ. This increasing spread implies that the loan size as a function of κ has a hump

shape, and is maximal for the equilibrium value of κ defined by (10). The rising

probability of default more than offsets the increase in promised repayments when

κincreases beyond this equilibrium value. This model may be viewed as a dynamic

equilibrium version of the model of credit rationing developed by Williamson (1987).

The spread corresponding to the equilibrium value of κ is equal to r/α.

It is instructive to consider a case of zero eviction costs. When λ→ 0, then ρ tends
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to one. Therefore, using expressions (10) and (11), we can see that

lim
λ→0

κ = 1, lim
λ→0

Pt =
α

α + 1
× It
r
.

As in the baseline model without aggregate uncertainty, the repayment ratio tends to

one when eviction costs vanish. Unlike in the baseline model, however, the equilibrium

loan-to-income ratio is still strictly smaller than 1/r in the limit. This reflects the

fact that negative realizations of systematic income risk imply contemporaneous large

supply of vacant units (due to foreclosures) and small demand (due to the low borrowing

capacity of potential buyers).12 Of course, this effect becomes marginal as δ → +∞,
in which case α→ +∞. In this case most trades are for exogenous reasons, and supply

and demand in the home market become therefore independent in the limit.

It is worthwhile noting that the fact that banks do not internalize the impact of

their choice of a repayment ratio κ on the value of collateral does not reduce their

supply of funds. In other words, a social planner internalizing the impact of κ on home

prices — that is, taking into account the fact that P depends on κ — cannot find a

value of κ for which debt capacities or home prices are higher than in the competi-

tive setting with price-taking banks.13 This contrasts with models that mix collateral

constraints and investment decisions, such as Bernanke and Gertler (1989) or Kiyotaki

and Moore (1997). In these models, decentralized equilibria inefficiently reduce aggre-

gate borrowing, because the negative balance sheet externalities that lenders create

for each other lead to inefficient investment decisions. In our environment, in which

asset supply is fixed and households always invest the entire amount of their loans in

housing, agents do not create such negative externalities for each other through the

channel of inefficient investment decisions.

B. Costs and Benefits of Diversification

In this section, we compare loan-to-income ratios in the nondiversifiable and di-

versifiable income risk cases. We begin with a situation in which relocation costs are

infinite. When χ = 0, contracts are terminated in both cases for the same two reasons

only — ET dates or default. Recall that in the case of nondiversifiable income risk,

the loan-to-income ratio is

L =
κ

r
× (1− κα)

1− ρκα+1
. (12)

When χ = 0 and income risk is diversifiable, (5) simplifies to

lim
χ→0

L =
κ

r
× 1− κα

1− ρκα
. (13)
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Comparing (12) with (13) yields the following result:

PROPOSITION 4: If χ = 0, the equilibrium loan-to-income ratio when income risk is

diversifiable is larger than that in the nondiversifiable case if and only if

ρ ≥ 0⇐⇒ λ ≤ r

r + δ
. (14)

Proof: Let κn and κd denote the respective equilibrium repayment ratios for the

nondiversifiable and diversifiable income risk cases. If ρ ≥ 0, then

κn (1− καn)

1− ρκαn
≥ κd (1− καd )

1− ρκαd
≥ κd (1− καd )

1− ρκα+1
d

.

If ρ ≤ 0, then
κd (1− καd )

1− ρκα+1
d

≥ κn (1− καn)

1− ρκα+1
n

≥ κn (1− καn)

1− ρκαn
.�

The intuition for this result is as follows. The expected proceeds from a loan

are the sum of three components: i) the promised repayments until default or an

exogenous move, (ii) sale proceeds net of eviction costs in the case of default, and (iii)

proceeds from selling the vacant home if the household moves for exogenous reasons.

Whether income risk is diversifiable or not has no impact on the value of component (i).

Diversifiable income risk implies that the income of a given household is uncorrelated

with home market values at default and ET dates. This has a positive effect on

component (ii), which represents situations in which individual income has done poorly,

but a negative effect on component (iii) when individual income has done rather well.

As δ and λ increase, a larger fraction of total loan value comes from component (iii)

than from component (ii). Thus, diversification has an adverse impact in this case.

In the presence of a finite relocation cost, it is no longer clear that equilibrium

loan-to-income ratios are larger with diversifiable income shocks even for values of δ

and λ that satisfy (14). In this case, the costs of diversification are more important

because the cross-sectional mobility of incomes implies that good borrowers exercise

their option to climb up the property ladder more often. Table I reports the values of

χ above which equilibrium debt capacity with diversifiable income risk is lower than

that with nondiversifiable income risk for different values of δ.

The values of χ below which diversifiable income risk yields lower debt capacities

become quickly very low as δ increases. Thus, the costs of diversification become

quickly as important as the benefits from higher collateral values.

In sum, table I shows that in the presence of one-sided commitment, diversifiability

of borrowers’ income risk does not necessarily ease collateralized lending. The larger
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Table I: Debt Capacity

δ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
χ 0.97 0.88 0.83 0.76 0.71 0.68 0.65 0.62 0.59

The table presents values of χ above which equilibrium debt capacity with diversifiable income risk

is lower than that with nondiversifiable income risk for different values of δ. Other parameters are as

follows: interest rate r = 2%, volatility of individual income σ = 25%, and eviction costs λ = 30%.

ex post heterogeneity of borrowers is a double-edged sword. On the one hand, the

assets seized from unlucky borrowers can always be sold to luckier borrowers standing

ready to snap them up. But the flip side of these higher liquidation proceeds is that the

same lucky borrowers receive more outside options in equilibrium, the exercise of which

imposes more costs on lenders. The possible benefits from diversification of borrowers’

risks on collateral liquidity have been well identified in the literature on endogenous

debt capacities (see, for example, Shleifer and Vishny (1992)). That the costs induced

by ex post heterogeneity may more than offset these benefits when borrowers’ outside

options are an equilibrium outcome is, to our knowledge, a novel finding.

Finally, the reader may wonder whether our comparison of borrowing capacities is

fair and the amount of total risk the same in both cases. Income is reset to one at

ET dates in the diversifiable income risk case, but not in the nondiversifiable one. The

answer is actually positive. The only reason we reset income in the diversifiable income

risk case is to obtain a stationary cross-section of incomes for calibration purposes.

Without resets, income distribution would no longer be stationary. However, the loan-

to-income ratio L and the average income of households in the market I would be

identical since the average income of all households following an ET date is equal to

one, which is all that is used to compute L and I.

VI. Concluding Remarks

We develop an analytically tractable model of secured lending to liquidity con-

strained borrowers. We derive equilibrium debt capacities, asset prices, and default

and refinancing intensities. Our findings suggest orders of magnitude for aggregate

quantities that should prevail in a stable subprime market. The model allows us to

understand the effect of a number of structural changes. For instance, the model pre-

dicts that lower relocation costs lead to lower individual debt capacities and default

risk, and yet to higher aggregate debt capacities and default rates.

Our model can be estimated, and its predictions can be tested, using household
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level data. In particular, in our equilibrium, only a fraction of the population seeks

to trade in the housing market at a given date. The income distribution of this ac-

tive fraction is different from that of the overall population. We find this to be a

distinctive and novel feature of our model. This implies that our setup imposes a tight

equilibrium relationship between the aggregate characteristics of the subprime mar-

ket (default intensities, trading volume, home prices) and the cross-section of actively

trading subprime households compared with the unconditional one.

The impact of the degree of income comovement across households on equilibrium

outcomes can also be tested. We predict that trading volume should be more stable

and higher on average in areas where income shocks are less correlated across house-

holds. The composition of the trading volume also depends on income correlation. The

proportion of distressed sales should be both more stable and smaller on average when

income correlation is lower. Further, we predict that the reduction in the transaction

cost parameter χ that occurred during the subprime boom must have led to a higher

increase in transactions in areas with low income correlation. Assessing whether these

predictions hold in the data could be an interesting avenue for future research.

We make a number of our simplifying assumptions for analytical tractability. These

assumptions can be relaxed for the purpose of estimation. For example, we assume

that households always exhaust their debt capacities, which results in a uniform repay-

ment ratio for all households. We could instead indirectly specify the cross-section of

household preferences by using a distribution of repayment ratios observed in the data,

or any other distribution. Similarly, we could allow for heterogeneity in refinancing

costs and in volatility of income shocks across households.

Finally, our approach to equilibrium secured lending to difficult borrowers could be

applied to situations other than mortgage markets, for example, to small businesses

and entrepreneurs.
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Notes

1Contributions include Foote, Gerardi, Goette, and Willen (2008, 2009), Gorton

(2008), Keys, Mukherjee, Seru, and Vig (2010), Mian and Sufi (2009, 2010), Piskorski,

Seru, and Vig (2010), and Rajan, Seru, and Vig (2009).

2See, for example, Mian and Sufi (2009).

3See, for example, Alvarez and Jermann (2000), Kehoe and Levine (2001), Krueger,

Lustig, and Perri (2008), and Hellwig and Lorenzoni (2009) for recent contributions.

4Following Becker and Mulligan (1997), one can interpret a high discount rate R as

a lack of financial sophistication.

5An alternative interpretation is that the household exits the economy at such dates,

and is replaced with a new one starting out with unit income.

6In our model, income shocks have a permanent effect. Gourinchas and Parker

(2002) and Carroll and Samwick (1997) allow income shocks to have also a transitory

component. They estimate the volatility of permanent and transitory components to

be 15% and 60%, respectively.

7The Internet Appendix can be found in the online version of this article.

8The front-end ratio divides mortgage payments, real estate taxes, and home insur-

ance premia by gross income. The back-end ratio adds other obligations such as credit

card and automobile debt to the numerator.

9See, for example, “The Subprime Lending Crisis,” Report and Recommendations

by the Majority Staff of the Joint Economic Committee, U.S. Senate, October 2007.

10This contrasts with Mayer, Piskorski, and Tchistyi (2008), where lower prepayment

penalties lead to higher interest rates and defaults in partial equilibrium because the

loan size is fixed.

11A numerical solution involves computing the distribution of the first hitting time

Qg (·) for a smooth boundary g(·), which is a notoriously difficult problem (see, for

example, Durbin and Williams (1992), and Wang and Pötzelberger (1997) for some

advances).
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12Thus, trading volumes goes down when home prices go up in our model, which

is counterfactual. This is because there is no rationale for downpayment constraints

in our environment. If we introduced the exogenous constraint that households can

voluntarily move at an ET date only if they have built up a minimal amount of home

equity at this date, then positive income realizations could entail a larger trading

volume.

13To see this, note that solving for P as a function of κ in (A17), plugging the

expression in (A16), and then maximizing over κ yields the same loan-to-income ratios

and home prices as in the competitive case in which banks maximize over κ taking P

constant.
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Appendix

We first state a number of auxiliary results that we use repeatedly throughout the

proofs and that can be skipped at first reading.

AUXILIARY RESULT 1: The density of Tκ is

ϕκ(t) = − lnκ

σ
√

2πt3
e

−(−σ
2 t−

lnκ
σ )

2

2t . (A1)

Its Laplace transform is

Lκ(s) = e
lnκ
σ

(
−σ

2
+

√
2s+σ2

4

)
= κ

− 1
2
+
√

2s
σ2

+ 1
4 . (A2)

Proof: See, for example, Borodin and Salminen (2002).�

AUXILIARY RESULT 2: Let X be a random variable independent from Tδ taking val-

ues in [0,+∞) ∪ {+∞} whose density has Laplace transform L(·). Define Tmin =

min(X,Tδ). Then the Laplace transform of the density of Tmin is given by

sL(s+ δ) + δ

s+ δ
.

Proof: Straightforward computations.�

AUXILIARY RESULT 3: Let Bµ
t = µt + Bt, where Bt is a standard Wiener process.

Define the running minimum Mµ
t as

Mµ
t = min

0≤s≤t
Bµ
t .

For t > 0 and x ≥ y, y ≤ 0,

Prob[Bµ
t ∈ dx,M

µ
t ∈ dy] =

2(x− 2y)√
2πt3

eµx−µ
2t/2− (x−2y)2

2t . (A3)

Proof: See Borodin and Salminen (2002), formula 1.2.8, p.252.�

Proof of Lemma 1

We first show that if ψ and R are sufficiently large, each household takes the largest

possible loan at the outset of a contract, and invests the entire amount in housing. The

proof is in two steps. In step 1, we show that for any given loan size, the household
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invests the entire loan in housing. In step 2, we show that the household takes the

largest possible loan at the outset of a contract.

Step 1. Let κ, L, and P respectively denote the steady-state repayment ratio, loan-

to-income ratio, and price of a housing unit. These endogenous variables depend on ψ

and R but they are bounded above and away from zero for all R, and ψ bounded away

from zero. Suppose that a household at time t signs a new contract, reports an income

Ît, and thus obtains a loan of size LÎt. Having the funds, the household solves for the

optimal date-t ct and qt. Because ct is nondurable, it affects only current utility. Thus,

it is sufficient to show that current utility is maximized when the household invests its

loan entirely in housing. Maximizing current utility amounts to solving

max
ct,qt

u (ct, χqt)

s. t.

ct + Pqt ≤ LÎt.

Thus, if ψ > P/χ, the household invests its loan entirely in housing: qt = LÎt/P .

Step 2. We now prove that for R sufficiently large, households take the largest possible

loan at the outset of a contract, that is, Ît = It. Intuitively, for large R, the household

wants to frontload its consumption as much as possible. For expositional simplicity,

we provide a formal proof for the case of a linear utility function u (ct, qt) = ct + ψqt.

A proof for a general u (ct, qt) follows a similar logic.

Let V (It) be the expected utility of a household with income It. Because of the

linearity assumption, V (It) = V It, where V is a constant. Let x = Ît/It and let τ(x) be

the stopping time of contract termination if the household reports Ît. Then V solves

V = max
x∈[0,1]

Et

∫ τ(x)

0

Re−Rs (It+s/It + ϕsx) ds+ V Re−Rτ(x)It+τ(x)/It, (A4)

where

ϕs =

{
ϕ− ≡ χψL/P − κ if s ∈ [0,∆t],

ϕ+ ≡ ψL/P − κ if s > ∆t.

Suppose that ψ > κP/(χL) so that ϕ+ > ϕ− > 0. We need to show that for R large

enough, the right-hand side of (A4) is maximized at x = 1. Let D be the derivative of
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the right-hand side of (A4) with respect to x. Direct computations show that

D ≥ ϕ− +
d

dx
Et

−e−Rτ(x)ϕ+x︸ ︷︷ ︸
D1

+

∫ τ(x)

0

Re−Rs (It+s/It) ds︸ ︷︷ ︸
D2

+ V Re−Rτ(x)It+τ(x)/It︸ ︷︷ ︸
D3

 .

(A5)

Consider term D1. Let f(t, x) be the density of τ(x). Thus,

Ete
−Rτ(x) =

∫ ∞
0

e−Rtf(t, x)dt.

It is well known that f(t, x) is a bounded and smooth function of t and x (see, for

example, Borodin and Salminen (2002)). Therefore,

D1 = − d

dx

(
Ete

−Rτ(x)ϕ+x
)

= −ϕ+

(∫ ∞
0

e−Rtf(t, x)dt+ x

∫ ∞
0

e−Rtf ′x(t, x)dt

)
. (A6)

From (A6) it is clear that D1 goes to zero as R → ∞. Similarly, one can show that

both D2 and D3 also go to zero as R→∞. Thus, D is positive for all x ∈ [0, 1] for R

large enough, and therefore the optimal choice of Ît = It.

Finally, we show that when ψ, R →∞, the upper termination threshold of a con-

tract initiated at date t tends to χ−1It. When R becomes arbitrarily large, the moving

decision is driven by the current utility. In this limiting case, the upper termination

threshold I∗ solves

u

(
I∗ − κIt,

LIt
P

)
= u

(
I∗ (1− κ) , χ

LI∗t
P

)
.

Clearly, I∗ → χ−1It when ψ becomes arbitrarily large.

Proof of Formulae in Proposition 1

We use the following mathematical results, which can be found in Borodin and

Salminen (2002, p. 627). Let ω(s) =
√

2s
σ2 + 1

4
. For all s > 0,

E
(
e−sTχ1{Tχ<Tκ}

)
=

√
χ
(
κω(s) − κ−ω(s)

)
(χκ)ω(s) − (χκ)−ω(s)

, (A7)

E
(
e−sTκ1{Tκ<Tχ}

)
=

χω(s) − χ−ω(s)
√
κ
(

(χκ)ω(s) − (χκ)−ω(s)
) . (A8)

Formulae (3) and (4) follow from (A7) and (A8) by setting s = δ.
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Computation of E
(
e−rTκ1{Tκ<Tχ ,Tκ<Tδ}

)
and 1− Ee−rT in (7):

Let ϕκ(·) denote the density of Tκ. Note that

E
(
e−rTκ1{Tκ<Tχ,Tκ<Tδ}

)
=

∫ ∞
0

e−(δ+r)tE
(
1{Tχ>t}

)
ϕκ(t)dt = E

(
e−(r+δ)Tκ1{Tκ<Tχ}

)
,

(A9)

which can be computed using (A8) and setting s = r+δ. Next, using Auxiliary Result 2

we have that

1−Ee−rT =
r

r + δ

1−
√
χ
(
κω(r+δ) − κ−ω(r+δ)

)
(χκ)ω(r+δ) − (χκ)−ω(r+δ)

− χω(r+δ) − χ−ω(r+δ)
√
κ
(

(χκ)ω(r+δ) − (χκ)−ω(r+δ)
)
 .

(A10)

Proof of Proposition 2

Clearing the market for vacant homes in the presence of such contracts yields:

L = E

(∫ min(Tδ,Tg)

0

e−rs−g(s)ds

)
+(1− λ)L×Et

(
e−rTg1{Tδ>Tg}

)
+L×Et

(
e−rTδ1{Tδ≤Tg}

)
.

We have

E

(∫ min(Tδ,Tg)

0

e−rs−g(s)ds

)
=

∫ ∞
0

− d

dt

(
e−δtQg (t)

) ∫ t

0

e−rs−g(s)ds

=

∫ ∞
0

Qg (s) e−(r+δ)s−g(s)ds,

Et
(
e−rTδ1{Tδ≤Tg}

)
=

∫ ∞
0

δe−(r+δ)tQg (t) dt,

E
(
e−rTg1{Tδ>Tg}

)
=

∫ ∞
0

d

dt
[1−Qg (t)] e−(r+δ)tdt = (r + δ)

∫ ∞
0

(1−Qg (t)) e−(r+δ)tdt

Solving for L yields the proposition.�

Proof of Proposition 3

We need to solve for the loan-to-income ratio and for the repayment ratio κ that

a bank chooses to offer at date t under the expectation that future home prices will

satisfy

∀u ≥ 0, Pt+u = PIt+u (A11)

for some constant P > 0.
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In the case of systematic risk, the income of any household perfectly correlates

with the home price. Given the fixed-repayment contracts, borrowing capacities are

also linear in income. Borrowing capacities and home prices therefore move in lockstep.

As a result, the household cannot buy a larger home when its income increases. Thus,

households never move voluntarily and the upper termination threshold is infinite.

With the notations introduced in the proof of Proposition 1, a loan taken at date

t is terminated at the random date t+ T, where

T = min (Tδ, Tκ) .

If a household j accepts the offer from a bank that quotes a repayment ratio κ at date

t, the bank expects the future flows from lending to household j to be equal to

LIj,t = Et

(∫ t+T

t

e−rsκIj,tds+ (1− λ) 1{Tδ>Tκ}e
−rTκPt+Tκ + 1{Tδ≤Tκ}e

−rTδPt+Tδ

)
.

(A12)

Applying (A10) with χ = 0 we have

Et

(∫ t+T

t

e−rsds

)
= Et

(
1− e−rT

r

)
=

1− κα

r + δ
. (A13)

Using Auxiliary Result 1, we can see that

Et
(
e−rT1{Tδ>Tκ}It+T

)
= κIt

∫ ∞
0

e−(r+δ)τϕκ(τ)dτ = κα+1It. (A14)

Finally, we use the following result, which we prove a bit later:

Et
(
e−rT1{Tδ≤Tκ}It+T

)
=
δ (1− κα+1)

r + δ
It. (A15)

Market clearing and (A13), (A14), and (A15) imply that

LIt = PIt =

(
κ (1− κα)

r + δ
+

(
(1− λ)κα+1 +

δ (1− κα+1)

r + δ

)
P

)
It, (A16)

or

L = P =
κ (1− κα)

r + δ
+ P ×

(
δ

r + δ
+
ρrκα+1

r + δ

)
. (A17)

Solving for P we obtain (11). From (A17) it is clear that the equilibrium repayment

ratio κ that maximizes L also maximizes P , and thus ∂P
∂κ

= 0 in the equilibrium. From
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(A17) it is easy to see that the optimal κ is a constant such that

(1 + α) (1− rρP )κα = 1. (A18)

Proposition 3 is then obtained by plugging (11) into (A18). That (10) has a unique

solution over [0, 1] is easy to see with a monotonicity argument.

Now we prove that

Et
(
e−rT1{Tδ≤Tκ}It+T

)
=
δ (1− κα+1)

r + δ
It.

Let us introduce a family of stopping times (Tκ,τ )τ≥0 = (min(Tκ, τ))τ≥0 . We have

Et
(
e−rT1{Tκ≥Tδ}It+T

)
=

∫ ∞
0

δe−δτe−rτEt[It+τ1{Tκ,τ=τ}]dτ.

Notice that

{Tκ,τ = τ} = { min
0≤s≤τ

Wt+s −Wt −
σs

2
>

ln(κ)

σ
} a.s.

By (A3) we have

Et
(
It+τ1{Tκ,τ=τ}

)
= It

∫ 0

ln(κ)
σ

∫ ∞
y

2(x− 2y)√
2πτ 3

e−
(x−2y)2

2τ eσxe−
σx
2
−σ

2τ
8 dxdy

= It

∫ 0

ln(κ)
σ

∫ ∞
0

2(x− y)√
2πτ 3

e−
(x−y)2

2τ e
σ
2
(x+y)e−

σ2τ
8 dxdy.

Using (A2) we have∫ ∞
0

δe−(δ+r+
σ2

8
)τ 2(x− y)√

2πτ 3
e−

(x−y)2
2τ dτ = 2δe−

√
2(r+δ)+σ2

4
(x−y), x ≥ y.

By Fubini’s theorem,

Et
(
e−rT1{Tκ≥Tδ}It+T

)
= δIt

∫ 0

ln(κ)
σ

∫ ∞
0

e−
√

2(r+δ)+σ2

4
(x−y)e

σ
2
(y+x)dxdy (A19)

=
δIt
r + δ

(
1− κ

1
2
+
√

2(r+δ)

σ2
+ 1

4

)
.� (A20)
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Figure 1. Comparative statics. Figure 1 shows the equilibrium values of the loan-to-income ratio

L, the home price P , the repayment ratio κ, and the default rate under an optimal contract with

fixed repayments as a function of the relocation cost parameter χ (its transformation χ−1 − 1 defines

the relocation costs). Other parameters are as follows: interest rate r = 2%, volatility of individual

income σ = 25%, and eviction costs λ = 30%.
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Figure 2. Transition dynamics. Figure 2 shows the evolution of aggregate quantities along the

transition path to the steady-state described in Section III.. Panel A displays the evolution of the

home price. Panel B displays the evolution of default intensities. Panel C displays the evolution of the

repayment ratio κ. Panel D displays the loan-to-income ratio L. The dashed line shows the evolution

of aggregate quantities if banks were naively offering the steady-state contract from date 0. The solid

line shows the evolution that prevails in equilibrium when banks optimize fixed-repayment contracts

at each date t. Other parameters are as follows: interest rate r = 2%, volatility of individual income

σ = 25%, eviction costs λ = 30%, and relocation cost parameter χ = 0.
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Figure 3. Optimal contracts. Figure 3, Panel A displays the repayment ratio κt as a function of

time passed since the outset of the contract for the optimal contracts described in Section IV in three

different contract spaces. Figure 3, Panels B to D show the behavior of aggregate quantities in the

three contract spaces described in Section IV. for different values of the arrival intensity of ET dates

δ. Panel B displays the loan-to-income ratio. Panel C displays the default intensity. Panel D displays

the home price. Other parameters are as follows: interest rate r = 2%, volatility of individual income

σ = 25%, eviction costs λ = 30%, and relocation cost parameter χ = 0.
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Internet Appendix for

“Equilibrium Subprime Lending”∗

This Internet appendix details the methodologies that we use in three parts of the

paper. In section A, we derive the cross-sectional distribution of household income and

explain how we estimate it using the PSID data set. This relates to the section II. B of

the paper. In section B, we explain how we solve for the transition dynamics that are

the scope of the section III of the paper. Finally, in section C, we prove the claim made

in the section IV of the paper that the optimal contract is a standard debt contract

when households are myopic.

A. Income Distribution

Since the income of each household follows a geometric Brownian motion and is reset

to one at Poisson random times (ET dates), the cross-section of household income has

the distribution of the exponentially stopped geometric Brownian motion:

P (I ∈ dz) =

{
δ
ωσ2 z

− 3
2
−ω if z ≥ 1

δ
ωσ2 z

− 3
2

+ω if z ≤ 1
, ω =

√
2δ

σ2
+

1

4
. (IA1)

Proof: Formula 1.0.5 in Borodin and Salminen (2002, p. 606). The distribution (IA1)

depends on the parameter ω. The log-likelihood function is

N ln

(
ω2 − 1

4

2ω

)
+ ω(

∑
zi<1

ln zi −
∑
zi>1

ln zi). (IA2)

Therefore, ω is a solution to the following equation

ω2 + 1
4

ω(ω2 − 1
4
)

=

∑
zi>1 ln zi −

∑
zi<1 ln zi

N
. (IA3)

Using household income from PSID data for 2003, we find that the right-hand side

of (IA3) is 0.8174. Solving for ω gives ω = 1.52. Our estimate of σ = 0.25 then

implies that δ = 0.064. As an attempt to better match the subprime population, we

also perform the same estimation for the following subsets of the population: PSID

race code 2 (African-American), 12 or less years of schooling, and age below 50. The

∗Citation format: [Makarov and Plantin, 2012], Internet Appendix for “Equilibrium Subprime
Lending,” Journal of Finance. Please note: Wiley-Blackwell is not responsible for the content or
functionality of any supporting information supplied by the authors. Any queries (other than missing
material) should be directed to the authors of the article.
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respective values of ω for each subset are 1.42, 1.57, and 1.51, which correspond to

values of δ = 0.055%, δ = 0.069%, and δ = 0.063%. In our calibration exercise,

therefore, we set δ = 0.0625, which corresponds to ω = 1.5.

B. Transition Dynamics

B.1. Home Prices Pt and Average Home Supply St

We first show that for all t > 0, St = S0 = 1 and Pt = LtIt. Market clearing implies

that for all t,

PtSt = LtIt.

Thus, we only need to show that St = 1 for all t > 0. For t > 0, τ ∈ [0, t), let πτ, t be

the fraction of households in the market at date t whose previous market participation

took place at date τ . Notice that the probability of being in the market at date t,

given that the previous participation occurred at date τ, does not depend on income

at date τ . This is because both ET and default dates on a given loan are independent

from the income level at loan origination. The average income of the above fraction at

time τ therefore equals Iτ , and hence the average supply of housing units of the above

fraction is Sτ . Thus, St solves

St =

∫ t

0

πτ, tSτdτ, S0 = 1, t ∈ (0,∞). (IA4)

Equation (IA4) is a Volterra integral equation of the second kind. Notice that,

πτ, tdτ = dF (t− τ)/F (t), (IA5)

where F (·) is the c.d.f. of the stopping time T that describes the realized duration of

a loan. Define an operator At : C[0, t]→ C[0, t] as

Atf(s) =

∫ s

0

πτ, sf(τ)dτ. (IA6)

Since

∀ t
∫ t

0

πτ, tdτ = 1,

the operator At has a unit norm. To complete the proof, it suffices to show that there

exists no eigenfunction that takes zero value at zero and has eigenvalue one. Suppose

conversely that there exists such a function f(s). Let tmax = argmaxs∈[0,t] |f(s)|. Since

2



f(0) = 0 and f 6= 0, it must be that tmax > 0. However,

Af(tmax) =

∫ tmax

0

πτ, tmaxf(τ)dτ < f(tmax),

a contradiction.

B.2. Calculation of Arrival Intensities and Average Income

Let T i be a stopping time that measures the time passed until household i, currently

in the market, returns to the market. Since χ = 0, the household returns to the market

only because of default or at ET dates. Since household incomes are independent, T i

are also mutually independent across households. In what follows, therefore, we drop

the superscript i.

First consider the case in which banks offer the steady-state fixed-repayment con-

tract (κ, L) at all dates t. Recall that in this case

T = min{Tκ, Tδ}.

Let ϕ denote the density of T . It is well known that the arrival intensity of households

to the market between t and t+ dt, ϕ∗(t), is the solution to the renewal equation

ϕ∗(t) = ϕ(t) +

∫ t

0

ϕ∗(t− s)ϕ(s)ds. (IA7)

Define φκ and φδ as

φκ(t)dt ≡ P{T ∈ dt, T = Tκ} = e−δt
lnκ

σ
√

2πt3
e

−(σ2 t+ lnκ
σ )

2

2t , (IA8)

φδ(t)dt ≡ P{T ∈ dt, T = Tδ} = δe−δt (1− Fκ(t)) dt, (IA9)

Fκ(t) =
1

2

(
Erfc

[
1√
2t

(
a− σt

2

)]
+ κ−1Erfc

[
1√
2t

(
a+

σt

2

)])
. (IA10)

The default intensity ϕ∗κ(t) at time t solves

ϕ∗κ(t) = φκ(t) +

∫ t

0

ϕ∗(t− s)φκ(s)ds. (IA11)

The average income It of households in the market at time t solves

Itϕ
∗(t) = κφκ(t) + φδ(t) +

∫ t

0

ϕ∗(t− s) (κIt−sφκ(s) + φδ(s)) ds. (IA12)
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Since the ET dates arrive with Poisson intensity, formula (IA12) can also be written

as

Itφ
∗(t) = κφκ(t) + δ + κ

∫ t

0

φ∗(t− s)It−sφκ(s)ds. (IA13)

Similarly, ϕ∗(t) solves

ϕ∗(t) = φκ(t) + δ +

∫ t

0

ϕ∗(t− s)φκ(s)ds. (IA14)

B.3. Computations with Equilibrium Contracts

Step 1 First, we start with the steady-state contract characterized by (κ, L). For this

contract, we compute φκ(t), φδ(t), the arrival intensity φ∗(t), and the average

income It using formulas (IA8), (IA9), (IA7), and (IA12).

Step 2 Given the income process It, recompute κt and Lt to ensure that banks maximize

the loan size and break even.

Suppose that a household has income of one. Then it can afford a home of size

Lt
Pt

=
1

It

Thus, a bank expects to recover

κt (1− καt )

r + δ
+ Et

[
e−rT

(
1− λ1{Tκ<Tδ}

)
Lt+T It+T/It

]
. (IA15)

Therefore,

Lt = max
κt

κt (1− καt )

r + δ
+ Et

[
e−rT

(
1− λ1{Tκ<Tδ}

)
Lt+T It+T/It

]
, (IA16)

and

κt = Argmax
κt

κt (1− καt )

r + δ
+ Et

[
e−rT

(
1− λ1{Tκ<Tδ}

)
Lt+T It+T/It

]
. (IA17)

To compute (IA16) and (IA17), we use the fact that in the long-run Lt = L and

κt = κ. Thus, Lt and κt can be solved recursively going backwards.

Step 3 We recompute the arrival intensities φ∗(t), φκ(t), and φδ(t) and average income It

for the κt process using the following generalization of formulas (IA14), (IA11),
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and (IA13):

φ∗(t) = φ(κ0, t) + δ +

∫ t

0

φ∗(t− s)φκ(κt−s, s)ds, (IA18)

φ∗κ(t) = φκ(κ0, t) +

∫ t

0

φ∗(t− s)φκ(κt−s, s)ds, (IA19)

Itφ
∗(t) = κ0φκ(κ0, t) + δ +

∫ t

0

φ∗(t− s)κt−sIt−sφκ(κt−s, s)ds. (IA20)

Step 4 Repeat steps 2 and 3 until convergence.

C. Contingent Repayment Schedules

For expositional simplicity, we adopt a discrete-time framework with dates {n∆t}n≥0,

where ∆t > 0. This way, the game between banks and households is simpler to for-

malize. As in the continuous-time model, at each date n, ET dates are realized, and

household j privately observes and consumes its income Ij,n∆t. The income process is

a series of discrete snapshots from its continuous-time counterpart.

Consider a household that has taken a loan at date 0. A generic contingent repay-

ment schedule can be described as follows. Let hn denote public history at date n.

That is, hn is the collection of all public information and all observable actions taken

by each party between zero and the end of period [(n− 1) ∆t, n∆t], with h0 = ∅. At

the beginning of each period [n∆t, (n+ 1) ∆t], the household terminates the contract

if it can afford a larger home or an ET date realizes, and stays in the contract other-

wise. In the latter case, the household makes an income report Îj,n∆t > 0. The bank

then asks for a repayment ρ(hn, Îj,n∆t) > 0, and commits to evict the household if it

fails to meet the repayment. As is common in applications of costly state verification

models (see, for example, Bernanke and Gertler (1989) and Gale and Hellwig (1985)),

we require eviction decisions to be a deterministic function of history.

It is easy to see that the optimal repayment schedule is noncontingent when the

household is myopic and cares only for current utility. Suppose that at a given date n ≥
1, a household cannot afford a larger home and an ET date has not been realized. In

this case, maximizing its current utility implies making the report Îj,n∆t that minimizes

the current repayment ρ(hn, Îj,n∆t). By induction, the household will make a minimal

repayment at each date given a history of having made minimal repayments before.

Thus, any contingent contract generates the same repayments as the noncontingent

contract comprised of deterministic repayments defined recursively as follows. The

5



first noncontingent repayment is the minimal repayment recommended at date 1 in the

contingent contract over all possible date-1 reports. Then the date n+1 noncontingent

repayment is the minimal date n+ 1 repayment of the contingent contract conditional

on always having made such a minimal repayment before.
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